A multiparticle Coulomb system with bound state at threshold

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 161125
(http://iopscience.iop.org/0305-4470/16/6/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:06

Please note that terms and conditions apply.

A multiparticle Coulomb system with bound state at threshold

M Hoffmann-Ostenhof $\uparrow \|$, T Hoffmann-Ostenhof \ddagger and B Simon $\S($
\doteqdot Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Österreich
\ddagger Institut für Theoretische Chemie und Strahlenchemie, Universität Wien, Währingerstrasse 17, 1090 Wien, Österreich
§ Departments of Mathematics and Physics, California Institute of Technology, Pasadena, California, USA

Received 19 August 1982

Abstract

We consider the two-electron Hamiltonian $H=-\Delta_{1}-\Delta_{2}-r_{1}^{-1}-r_{2}^{-1}+A r_{12}^{-1}$ at precisely that critical value of A where the ground state energy has just hit the continuum. For that A, it is proven that H has a square integrable eigenfunction at the bottom of the continuum.

1. Introduction

The class of Hamiltonians

$$
\begin{equation*}
H(A)=-\Delta_{1}-\Delta_{2}-r_{1}^{-1}-r_{2}^{-1}+A r_{12}^{-1} \tag{1}
\end{equation*}
$$

on $L^{2}\left(\mathbb{R}^{6}, \mathrm{~d} x_{1} \mathrm{~d} x_{2}\right), x_{1}, x_{2} \in \mathbb{R}^{3}, r_{1}=\left|x_{1}\right|, r_{2}=\left|x_{2}\right|, r_{12}=\left|x_{1}-x_{2}\right|$, enters naturally in the study of the $1 / Z$ expansion for two-electron ions. Since the work of Stillinger (1966) there has been particular interest in the critical value of A (call it A_{0}) (see e.g. Stillinger and Stillinger 1974) as follows. For any $A>0, H$ has continuous spectrum $\left[-\frac{1}{4}, \infty\right)$. At $A=0, H$ has a ground state at energy $E(0)=-\frac{1}{2}$, and as A is increased, the ground state energy $E(A)$ increases until $A_{0}, E\left(A_{0}\right)=-\frac{1}{4}$. For simplicity, we have chosen here $-\Delta_{1}-\Delta_{2}$ for the kinetic energy, which poses no problem, since by scaling $2 H$ is unitarily equivalent to the usual Hamiltonian $-\Delta_{1} / 2-\Delta_{2} / 2-1 / r_{1}-1 / r_{2}+A / r_{12}$. It can be proven (see e.g. Thirring 1979, Leinfelder and Simon 1982) that $A_{0}<\infty$, and since it is well known that the hydrogenic ion has a bound state, $A_{0}>1$. Numerically (Stillinger 1966), $A_{0} \sim 1.1$.

Our main goal in this paper is to prove that at $A=\boldsymbol{A}_{0}$ there is a ground state, $\psi>0, \psi \in L^{2}\left(\mathbb{R}^{6}\right)$ with $H \psi=-\frac{1}{4} \psi$, i.e. there is a normalisable eigenfunction at threshold. Since short-range potentials in three dimensions do not produce normalisable ground states at thresholds (see e.g. Klaus and Simon 1980), this phenomenon is due to the long-range repulsion of r_{12}^{-1}. We mention that Klaus and Simon (1982) noted that for the three-dimensional model problem, $H=-\Delta+V+\alpha r^{-1}$ where V is spherically

[^0]symmetric, negative, short range with inf $\sigma(-\Delta+V)<0$, one has a threshold eigenvector at the critical coupling. For this reason, our result is to be expected.

In $\S 2$, we prove that $H \psi=-\frac{1}{4} \psi$ has a bounded solution and in $\S 3$ that the solution is L^{2}. In § 4 we discuss some further aspects. Critical to our considerations are various subharmonic comparison arguments as found e.g. in (Simon 1975, Hoffmann-Ostenhof 1980) and other results on properties of eigenfunctions as reviewed by Simon (1982).

One common theme of the analysis in $\S \S 2$ and 3 will be to take a bounded solution ψ of $H(A) \psi=E(A) \psi$ for some A with $\psi\left(r_{1}, r_{2}, r_{12}\right)=\psi\left(r_{2}, r_{1}, r_{12}\right)$ and form

$$
\begin{equation*}
F\left(r_{1}\right)=\int \phi\left(r_{2}\right) \psi\left(x_{1}, x_{2}\right) \mathrm{d} x_{2} \tag{2}
\end{equation*}
$$

where ϕ is the ground state of $h=-\Delta_{2}-r_{2}^{-1}$. We will need:
Proposition 1.1. Let

$$
\begin{equation*}
G\left(r_{1}\right)=A \int \phi\left(r_{2}\right) r_{12}^{-1} \psi\left(x_{1}, x_{2}\right) \mathrm{d} x_{2} \tag{3}
\end{equation*}
$$

Then under the above assumptions F is a C^{2} function away from $r_{1}=0$ obeying

$$
\begin{equation*}
\left(-\Delta_{1}-r_{1}^{-1}-E-\frac{1}{4}\right) F=-G \tag{4}
\end{equation*}
$$

Proof. Since ψ is bounded by assumption and ϕ decays, both F and G are bounded. Indeed, since ψ is uniformly Lipschitz by estimates of Kato (1957), G is also Lipschitz. Thus, if we prove (4) in the distributional sense, standard elliptic estimates (see e.g. Gilbarg and Trudinger 1977, Simon 1982) imply that F is C^{2} and (4) holds in the classical sense in $(0, \infty)$. In the distributional sense

$$
\begin{equation*}
\left[\left(-\Delta_{1}-r_{1}^{-1}-E-\frac{1}{4}\right) F\right]\left(r_{1}\right)=\int \phi\left(r_{2}\right)\left[(H-E)-\left(h+\frac{1}{4}\right)-A r_{12}\right] \psi\left(x_{1}, x_{2}\right) \mathrm{d} x_{2}=-G \tag{5}
\end{equation*}
$$

if we integrate by parts.

2. Existence of a bounded solution

In this section we will prove
Theorem 2.1. There exists a positive bounded function ψ, symmetric in x_{1}, x_{2}, which is a distributional solution of $H\left(A_{0}\right) \psi=-\frac{1}{4} \psi$.

We begin by noting that, by definition of A_{0}, we can find $E_{n} \uparrow-\frac{1}{4}$ and $\psi_{n}>0$, $\psi_{n}=\psi_{n}\left(r_{1}, r_{2}, r_{12}\right)=\psi_{n}\left(r_{2}, r_{1}, r_{12}\right)$ so that $H\left(A_{n}\right) \psi_{n}=E_{n} \psi_{n}$ with $A_{n}=A_{0}-1 / n$. We will normalise ψ_{n} by requiring

$$
\sup _{x \in \mathbb{R}^{\delta}} \psi_{n}(x)=1
$$

By the compactness of the unit ball in L^{∞} in the weak-* topology (see e.g. Reed and Simon 1972, theorem IV.21), we can by passing to a subsequence find ψ in L^{∞} so that

$$
\int f(x) \psi_{n}(x) \mathrm{d} x \rightarrow \int f(x) \psi(x) \mathrm{d} x \quad \text { for } n \rightarrow \infty \quad \text { for all } f \in L^{1}\left(\mathbb{R}^{6}\right)
$$

ψ is easily seen to be a distributional solution of $H\left(\boldsymbol{A}_{0}\right) \psi=-\frac{1}{4} \psi$. The key fact is to show that ψ is not identically zero, i.e. that ψ_{n} does not run away to ∞. Once we show that ψ is not identically zero, it is somewhere non-negative, and then by Harnack's inequality (see e.g. Aizenman and Simon 1982) it is everywhere positive.

Lemma 2.2. Let $F_{n}\left(r_{1}\right)=\int \phi\left(r_{2}\right) \psi_{n}\left(x_{1}, x_{2}\right) \mathrm{d} x_{2}$ as in (2). Suppose that for some $R<\infty$ and $\varepsilon>0, \sup _{r_{1} \leqslant R} F_{n}\left(r_{1}\right) \geqslant \varepsilon$ for all large n; then ψ is not identically zero.

Proof. By Harnack's inequality there exists a constant C, so that for all $n, \psi_{n}\left(x_{1}, x_{2}\right) \geqslant$ $C \psi_{n}\left(x_{1}^{\prime}, x_{2}\right)$ if $\left|x_{1}-x_{1}^{\prime}\right| \leqslant 1$. Thus, if $F_{n}\left(r_{1}^{\prime}\right) \geqslant \varepsilon$, we have that $F_{n}\left(r_{1}\right) \geqslant C \varepsilon$ if $\left|x_{1}^{\prime}-x_{1}\right| \leqslant 1$; so if $\sup _{r_{1} \leqslant R} F_{n}\left(r_{1}\right) \geqslant \varepsilon$, we have that

$$
\int_{r_{1} \leqslant R+1} F_{n}\left(r_{1}\right) \mathrm{d} r_{1} \geqslant \frac{4}{3} \pi C \varepsilon .
$$

Thus, since $\phi \in L^{1}$,

$$
\int_{\left|x_{1}\right| \leqslant R+1} \phi\left(r_{2}\right) \psi\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \geqslant \frac{4}{3} \pi \varepsilon C, \quad \text { so } \quad \psi \neq 0 .
$$

Lemma 2.3. For some $\varepsilon>0, \sup _{r} F_{n}(r) \geqslant \varepsilon$ for all n.
Proof. Let K be the region where $r_{1}>8, r_{2}>8$. Then, on $K,-\Delta \psi_{n}=$ $\left(E_{n}-A_{n} r_{12}^{-1}+r_{1}^{-1}+r_{2}^{-1}\right) \psi_{n} \leqslant 0$ for n large. So ψ_{n} is subharmonic on K and thus, since $\psi_{n} \rightarrow 0$ at infinity (Simon 1982), we know that ψ_{n} takes its maximum value (which is 1) on the complement of K. Since ψ_{n} is symmetric in x_{1}, x_{2} we can find $x_{1}^{(n)}$ and $x_{2}^{(n)}$ with $\left|x_{2}^{(n)}\right| \leqslant 8$, so that $\psi_{n}\left(x_{1}^{(n)}, x_{2}^{(n)}\right)=1$. By Harnack's inequality, for som ; ε_{0}, $\psi_{n}\left(x_{1}^{(n)}, x_{2}\right) \geqslant \varepsilon_{0}$ if $r_{2} \leqslant 1$. (Note that ε_{0} does not depend on n.) Thus, with

$$
\varepsilon=\varepsilon_{0} \int_{\mid x_{2} \leqslant 1} \phi\left(r_{2}\right) \mathrm{d} x_{2}
$$

we see that $F_{n}\left(r_{1}^{(n)}\right) \geqslant \varepsilon$.
The next lemma will be needed again in the next section. We remark that it only uses $\sup _{x \in \mathbb{R}^{6}} \psi_{n}(x) \leqslant 1$.

Lemma 2.4. For any $\delta>0$, there is a function $H_{\delta}\left(r_{1}\right)$ obeying

$$
\begin{equation*}
H_{\delta}\left(r_{1}\right) \leqslant C \mathrm{e}^{-D r_{1}} \tag{6}
\end{equation*}
$$

for some $C, D>0$ so that for all $r_{1} \geqslant 1$

$$
\begin{equation*}
G_{n}\left(r_{1}\right) \geqslant\left(A_{0}-\frac{1}{4}\right)(1-\delta) r_{1}^{-1} F_{n}\left(r_{1}\right)-H_{\delta}\left(r_{1}\right) \tag{7}
\end{equation*}
$$

with $G_{n}=\left(\Delta_{1}+r_{1}^{-1}+E_{n}-\frac{1}{4}\right) F_{n}$. (Note. We emphasise that C, D are independent of n.)
Proof. Let $b=\delta(1-\delta)^{-1}$. Then, since $r_{12} \leqslant r_{1}+r_{2}$,

$$
\begin{aligned}
G_{n}\left(r_{1}\right) & \geqslant A_{n} \int_{x_{2} \leqslant \delta r_{1}}\left(r_{1}+r_{2}\right)^{-1} \phi \psi_{n} \mathrm{~d} x_{2} \geqslant A_{n}(1+b)^{-1} r_{1}^{-1} \int_{\mid x_{2} \leqslant b r_{1}} \phi \psi_{n} \mathrm{~d} x_{2} \\
& \geqslant A_{n}(1-\delta) r_{1}^{-1} F_{n}\left(r_{1}\right)-H_{\delta}\left(r_{1}\right)
\end{aligned}
$$

where

$$
H_{\delta}\left(r_{1}\right)=A_{0} r_{1}^{-1} \int_{\left|x_{2}\right| \geq b r_{1}} \phi\left(r_{2}\right) \mathrm{d} x_{2}
$$

which is easily seen to obey (6) since ϕ decreases exponentially.
Proof of theorem 2.1. Due to lemmas 2.2 and 2.3 it suffices to show that for some $R>0, \sup _{r} F_{n}(r)=\sup _{r \leqslant R} F_{n}(r)$ for $n \geqslant N, N$ large. Choose r_{n} such that $F_{n}\left(r_{n}\right)=$ $\sup _{r} F_{n}(r)$ and pick δ and N so that $\left(A_{0}-1 / N\right)(1-\delta) \geqslant 1+\delta$, which is possible since $A_{0}>1$. Suppose r_{n} becomes arbitrarily large for $n \rightarrow \infty$; then by proposition 1.1 and lemma 2.4

$$
\left(\Delta F_{n}\right)\left(r_{n}\right) \geqslant G_{n}\left(r_{n}\right)-\left(1 / r_{n}\right) F_{n}\left(r_{n}\right) \geqslant \delta F_{n}\left(r_{n}\right) / r_{n}-C \mathrm{e}^{-D r_{n}}
$$

with C, D given in (6). This together with lemma 2.3 implies

$$
\left(\Delta F_{n}\right)\left(r_{n}\right) \geqslant r_{n}^{-1}\left(\varepsilon \delta-C r_{n} \mathrm{e}^{-D r_{n}}\right)>0 .
$$

But this is impossible if F_{n} is maximised at r_{n} and thus $r_{n} \leqslant R$. Lemma 2.2 is therefore applicable and theorem 2.1 follows.

3. Existence of an $\boldsymbol{L}^{\mathbf{2}}$ solution

In this section we will prove
Theorem 3.1. The solution $\psi\left(x_{1}, x_{2}\right)$ of theorem 2.1 obeys

$$
\begin{equation*}
\left|\psi\left(x_{1}, x_{2}\right)\right| \leqslant C_{m}\left(1+r_{1}^{2}+r_{2}^{2}\right)^{-m} \tag{8}
\end{equation*}
$$

for any $m>0$ and in particular, $\psi \in L^{2}$.
We want first to reduce the theorem to the study of the function F of (2).
Lemma 3.2. If

$$
\begin{equation*}
F\left(r_{1}\right) \leqslant \tilde{C}_{m}\left(1+r_{1}^{2}\right)^{-m} \tag{9}
\end{equation*}
$$

then (8) follows.
Proof. Since ϕ is bounded away from zero on $r_{2}<17$, we see that if (9) holds and $r_{2}<16$, then

$$
\int_{\left|x^{\prime}-x\right| \leqslant 1} \psi\left(x^{\prime}\right) \mathrm{d}^{6} x^{\prime} \leqslant C_{m}^{(1)}\left(1+r_{1}^{2}+r_{2}^{2}\right)^{-m}
$$

and so by subsolution estimates (Simon 1982), if $r_{2}<16$ (or by symmetry if $r_{1}<16$), then (8) holds. In the region where $r_{1}>16$ and $r_{2}>16$ we have that

$$
\Delta \psi \geqslant \frac{1}{8} \psi
$$

On the other hand, if $\psi_{-}=\left(r_{1}^{2}+r_{2}^{2}+1\right)^{-m}$ and $\psi_{+}=\left(r_{1}^{2}+r_{2}^{2}+1\right)^{m}$, then (with $r=$ $\left.\left(r_{1}^{2}+r_{2}^{2}\right)^{1 / 2}\right)$

$$
\begin{aligned}
& \Delta \psi_{-}=\left(r^{2}+1\right)^{-1} \psi_{-}\left[4 m(m+1) r^{2}(r+1)^{-1}-12 m\right] \\
& \Delta \psi_{+}=\left(r^{2}+1\right)^{-1} \psi_{+}\left[4 m(m-1) r^{2}(r+1)^{-1}+12 m\right] .
\end{aligned}
$$

Thus, in the region $r_{1} \geqslant 16, r_{2} \geqslant 16, r \geqslant R_{0}$,

$$
\Delta\left(c \psi_{-}+\varepsilon \psi_{+}\right) \leqslant \frac{1}{8}\left(c \psi_{-}+\varepsilon \psi_{+}\right)
$$

for all $c, \varepsilon>0$ and with suitable R_{0} (depending on m). Let R_{1} be given with $R_{1}>R_{0}$. By the foregoing considerations there is some $c>0$ such that $\psi \leqslant c \psi_{-}$for $r_{1}=16$ or $r_{2}=16$ or $r=R_{0}$. Further, since ψ is bounded $\psi \leqslant \varepsilon \psi_{+}$for $r=R_{1}$ with $\varepsilon \geqslant$ $\sup \psi /\left(R_{1}^{2}+1\right)^{m}$. Hence $\psi \leqslant c \psi_{-}+\varepsilon \psi_{+}$on the boundary of the region $\Omega=$ $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{6} \mid r_{1} \geqslant 16, r_{2} \geqslant 16, R_{0} \leqslant r \leqslant R_{1}\right\}$. Using a standard comparison argument for differential inequalities (see e.g. Simon 1975), we get $\psi \leqslant c \psi_{-}+\varepsilon \psi_{+}$in Ω. As can be seen from above, c is independent of R_{1} and $\varepsilon \rightarrow 0$ as $R_{1} \rightarrow \infty$. Hence we recover (8) for $r \geqslant \boldsymbol{R}_{0}$. If $r<R_{0}$, (8) is trivial.

To prove theorem 3.1 we shall further need the following lemmas.
Lemma 3.3. Let $v(r) \geqslant 0$ obey

$$
-v^{\prime \prime}+m(m+1) r^{-2} v \leqslant 0
$$

on $[R, \infty), R>0$. Then either v grows at least as fast as r^{m+1} at infinity or decreases at least as fast as r^{-m}.

Proof. If $v^{\prime} v^{-1} \leqslant-m r^{-1}$ on $[R, \infty)$, then obviously for some $C>0, v \leqslant C r^{-m}$, so it suffices to show that if $v^{\prime}\left(r_{0}\right)>-m r_{0}^{-1} v\left(r_{0}\right)$ for some $r_{0}>R$, then v grows at least like r^{m+1}. The functions

$$
u(c, r)=r^{m+1}+c r^{-m}
$$

with $c \in\left[-r_{0}^{2 m+1}, \infty\right)$ are positive on $\left[r_{0}, \infty\right)$ and obey $-u^{\prime \prime}+m(m+1) r^{-2} u=0$. As c runs through that interval, $u^{\prime}\left(r_{0}\right) / u\left(r_{0}\right)$ runs from $+\infty$ to $-m r_{0}^{-1}$, so we can find such a u with $u^{\prime}\left(r_{0}\right) / u\left(r_{0}\right) \leqslant v^{\prime}\left(r_{0}\right) / v\left(r_{0}\right)$ and thus a multiple of u (call it \tilde{u}) with $v^{\prime}\left(r_{0}\right)>\tilde{u}^{\prime}\left(r_{0}\right)$ and $\tilde{u}\left(r_{0}\right)=v\left(r_{0}\right)$. We claim that $v(r)>\tilde{u}(r)$ for all $r>r_{0}$, proving the desired result. For if r_{1} is the smallest $r>r_{0}$ where $v(r)=\tilde{u}(r)$, then

$$
\begin{aligned}
0 \geqslant \int_{r_{0}}^{r_{1}}[\tilde{u}(- & \left.\left.v^{\prime \prime}+m(m+1) r^{-2} v\right)-v\left(-\tilde{u}^{\prime \prime}+m(m+1) r^{-2} \tilde{u}\right)\right] \mathrm{d} r \\
& =r_{r_{1}}^{r_{1}}\left(v \tilde{u}^{\prime}-\tilde{u} v^{\prime}\right)=v\left(r_{1}\right)\left(\tilde{u}^{\prime}\left(r_{1}\right)-v^{\prime}\left(r_{1}\right)\right)+v\left(r_{0}\right)\left(-\tilde{u}^{\prime}\left(r_{0}\right)+v^{\prime}\left(r_{0}\right)\right)>0
\end{aligned}
$$

which is a contradiction.
Lemma 3.4. Let $g(r)=C r \mathrm{e}^{-D r}$ and let $v(r) \geqslant 0$ obey

$$
-v^{\prime \prime}+m(m+1) r^{-2} v \leqslant g(r)
$$

on $\left[R_{m}, \infty\right), R_{m}>0$. Then either v grows at least as fast as r^{m+1} at infinity or decays at least as fast as r^{-m}.

Proof. Define for $r \geqslant R_{m}$

$$
\eta(r)=\frac{1}{2 m+1}\left(r^{m+1} \int_{r}^{\infty} x^{-m} g(x) \mathrm{d} x+r^{-m} \int_{R_{m}}^{r} x^{m+1} g(x) \mathrm{d} x\right) .
$$

Then $-\eta^{\prime \prime}+m(m+1) r^{-2} \eta=g$ and since $\int_{R_{m}}^{\infty} x^{m+1} g(x) \mathrm{d} x<\infty, \eta(r) \leqslant \mathrm{d} r^{-m}$ for some $0<d<\infty$. Let $\tilde{v}=v+\mathrm{d} r^{-m}-\eta$; then $\tilde{v} \geqslant 0$ and obeys $-\tilde{v}^{\prime \prime}+m(m+1) \tilde{v} \leqslant 0$ on $\left[\boldsymbol{R}_{m}, \infty\right)$.

But by the foregoing lemma \tilde{v} grows at least like r^{m+1} or decays at least as fast as r^{-m}, and according to the definition of \tilde{v}, v has the same properties.

Proof of theorem 3.1. Due to lemma 3.2 it suffices to verify inequality (9) by proposition 1.1 and lemma 2.4 we know that for $r>1$

$$
\Delta F-\delta r^{-1} F \geqslant-C \mathrm{e}^{-D r}
$$

and so, for $r \geqslant R_{m}$, where $R_{m}>m(m+1) / \delta$,

$$
\Delta F-m(m+1) r^{-2} F \geqslant-C \mathrm{e}^{-D r} .
$$

The fact that F is spherically symmetric and bounded (since ψ is bounded) together with lemma 3.4 implies that F decays at least as fast as r^{-m}, finishing the proof of the theorem.

4. Remarks

(1) As explained in (Simon 1977), the fact that the ground state is L^{2} at A_{0} immediately implies that for $A \leqslant A_{0}, E(A) \leqslant E\left(A_{0}\right)+d\left(A-A_{0}\right)$ with $d>0$ so that $E(A)$ cannot turn into an antibound state at A_{0}. We agree with Reinhardt's analysis (Reinhardt 1977) that it probably turns into a resonance pair.
(2) Following the 'Schrödinger inequality' methods (Hoffmann-Ostenhof and Hoffmann-Ostenhof 1977, Ahlrichs et al 1981), it can be shown that at A_{0}, the one-particle density ρ obeys

$$
\sqrt{\rho(r)} \geqslant C_{ \pm}(\delta)(r+1)^{-\frac{3}{4} \pm \delta} \exp \left\{-\left[4\left(A_{0}-1\right) r\right]^{\frac{1}{k}}\right\} .
$$

(3) The Coulomb nature of the potential was unimportant. What was critical was that at the critical coupling the electron about to be unbound sees a potential which is repulsive at infinity with a slower decay than r^{-2}.

Acknowledgments

It is a pleasure to thank E Lieb for the hospitality of the Princeton University where this collaboration began. Two of us (M and TH-O) want to thank J Morgan for drawing our attention to this problem and for a useful discussion.

References

Reed M and Simon B 1972 Methods of Modern Mathematical Physics I, Functional Analysis (New York: Academic)
Reinhardt W 1977 Phys. Rev. A 15832
Simon B 1975 Trans. Am. Math. Soc, 208317

- 1977 J. Funct. Anal. 25338
- 1982 Bull. Am. Math. Soc. 7447

Stillinger F H 1966 J. Chem. Phys. 453623
Stillinger F H and Stillinger D K 1974 Phys. Rev. A 101109
Thirring W 1979 Lehrbuch der Mathematischen Physik III (Wien: Springer)

[^0]: || Supported by 'Fonds zur Förderung der wissenschaftlichen Forschung in Österreich', Project no. 4240.
 T Research partially supported by USNSF under Grant MCS-81-20833.

